- cross-posted to:
- technology@lemmy.world
baseline
Base load. Here’s an argument that we don’t need it: https://cleantechnica.com/2022/06/28/we-dont-need-base-load-power/
There’s an interesting point buried at the end of that article: electricity quality. With batteries in the loop, supply can scale with demand almost instantly, versus the time it takes for various types of power plant to adjust output.
I wonder if this has any impact on another piece of the puzzle, high voltage direct current (HVDC) which we need to transport electricity over large distances with minimal loss.
There’s an equally buried link to a death by powerpoint that made me pray for a blackout before i could get anywhere close to understanding how that bar graph was constructed.
I can’t vouch for the following being a necessarily better source, but this one seem a lot more upfront about some of their assumptions and sensitivities. In this adding storage to wind is seems to be +tens of dollars per MWh; a fair amount more than the +1-3 dollars per MWh shown in the cleantech article.
https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/So i’d like to know where these cheap battery cost assumption comes from - is it proven tech, available at scale , at that price?
just seems a bit too good to be true.
Reading that… It basically seems to say that we can live with intermittent blackouts when wind and solar fail.