• 0 Posts
  • 24 Comments
Joined 1 year ago
cake
Cake day: October 4th, 2023

help-circle


  • justJanne@startrek.websitetoTechnology@lemmy.world*Permanently Deleted*
    link
    fedilink
    English
    arrow-up
    17
    ·
    edit-2
    10 months ago

    It’s not just office, SH and many other parts of the German government have been slowly replacing the entire O365 suite with OpenDesk, which is an open source product based on Matrix, Jitsi, LibreOffice, and a few other tools.

    The goal is to have a fully integrated solution for calender, chat, calls, documents, cloud storage, etc.

    My employer is developing parts of that solution and we recently switched our internal communication over to it, and tbh, it’s working really well.

    Now is the perfect point in time to do it, with the GDPR ruling regarding O365 and Microsoft fumbling the migration between old teams and new teams.


  • You’re absolutely right on that count. If you switch fast enough, everything has a capacitance. That’s why with CMOS designs once you go above a few kHz you start worrying about fan out.

    It’s also why, once the ceiling is reached, everything starts using modulation tricks previously used in RF. Ethernet started with 1GbE, USB with 3.0, DSL did it from the start, with PCIe even gamers have probably seen eye diagrams in riser tests, and coax is the very definition of pushing RF over a wire.


  • Yes, of course there is error correction. Also, while the SSD is on power, it’ll constantly go through all data and fix the areas that are starting to deteriorate.

    But this does mean an SSD left without power will slowly lose data over months and years.

    This also means that writing data is much slower and the SSD can handle far fewer writes. But the tradeoff is that TLC and QLC SSDs can handle 2× and 4× more data than MLC SSDs for the same price.

    That’s why MLC SSDs are primarily used for professional use and TLC and QLC is primarily used for gamers.

    Some TLC and QLC SSDs even allow you to choose how much of the SSD should be used as SLC/MLC space (4× less data, 4× faster writes, 4× more endurance) and which part should be used as TLC/QLC (4× more data, 4× slower changes, 4× less endurance).


  • SSDs aren’t just that simple. All of them have at least some SLC area, usually as cache, that’s in base 2. But the rest of the SSD can be SLC base 2, MLC base 4, TLC base 8 or even QLC base 16.

    And overall it’s still base 2 because each SSDs pretend one block of base 4 is just two blocks of base 2, and accordingly they pretend a block of base 16 is just 8 blocks of base 2 storage.














  • Most fusion attempts try to keep a continuous reaction ongoing.

    Tokamak reactors, like JET or ITER do this through a changing magnetic field, which would allow a reaction to keep going for minutes, the goal is somewhere around 10-30min.

    Stellerator reactors try to do the same through a closed loop, basically a Möbius band of plasma encircled by magnets. The stellerator topology of Wendelstein 7-X was used as VFX for the closed time loop in Endgame. This complex topology allows the reaction to continue forever. Wendelstein 7-X has managed to keep its reaction for half an hour already.

    The NIF is different. It doesn’t try to create a long, ongoing, controlled reaction. It tries to create a nuclear chain reaction for a tiny fraction of a millisecond. Basically a fusion bomb the size of a grain of rice.

    The “promise” is that if one were to just repeat this explosion again and again and again, you’d also have something that would almost continually produce energy.

    But so far, the NIF has primarily focused on getting as much data as possible about how the first millisecond of a fusion reaction proceeds. The different ways to trigger it, and how it affects the reaction.

    The US hasn’t done large scale nuclear testing in decades. Almost everything is now happening in simulations. But the first few milliseconds of the ignition are still impossible to accurately model in a computer. To build a more reliable and stronger bomb, one would need to test the initial part of a fusion reaction in the real world repeatedly.

    And that’s where the NIF comes in.


  • If you actually calculate the maximum speed at which information can travel before causing paradoxes, in some situations it could safely exceed c.

    For two observers who are not in motion relative to each other, information could be transmitted instantly, regardless of the distance, without causing a paradox.

    The faster the observers are traveling relatively to each other, the slower information would have to travel to avoid causing paradoxes.

    More interestingly, this maximum paradox-free speed correlates with the time and space dilation caused by the observers’ motion.

    From your own reference frame, another person is moving at a speed of v*c. The maximum speed at which you could send a message to that observer, without causing a paradox, looks something like c/sqrt(v) (very simplified).